ca888亚洲城手机版
学术动态
当前位置: 学院首页 > 学术动态 > 正文

博士生王伟CSC公派留学回国及ASME-IDETC/CIE国际会议参会报告

发布时间:2020-01-06 点击数:


报告时间:202016(星期一) 14:00

地点:创新港2号巨构2-2072房间

汇报人:王伟

汇报内容:

1. Two-years studying in University of Toronto as a visiting student supported by CSC

留学单位:加拿大多伦多大学

留学时间:2018.01~2019.12

Abstract

In the past two years, Mr. Wang was supported by CSC and performed his research work as a visiting Ph.D student supervised by Prof. Naguib at the Department of Mechanical Industrial and Engineering (MIE), University of Toronto, Canada. His major research directions are energy harvesting from vibrations, smart materials and structures, and he published four journal papers and two conference papers during his stay at University of Toronto. In the presentation, Mr. Wang will share his research and studying experience at University of Toronto. Also, something about University of Toronto and the living experience there will be presented.

2. Presentation of attending the 2018 ASME-IDETC/ICE (International Design Engineering Technical Conferences & Computers and Information in Engineering Conference)

会议时间: August 26-29, 2018

会议地点: Quebec City, Canada

会议简介:The ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2018) took place during August 26-29, 2018 in Quebec City, Canada. IDETC/CIE 2018 highlighted emergent technologies that impact the critical engineering issues of product design and development, manufacturing, and the management and integration of information systems throughout the product life-cycle. These events were key international meetings for design and manufacturing engineers in academia, government and industry.

参会论文信息:

Title: Influence of bias angle on output performance of nonlinear asymmetric energy harvesters: experimental investigation

Authors:Wei Wang, Junyi Cao*, Ying Zhang, Chris R. Bowen

Abstract:In recent decades, the technique of piezoelectric energy harvesting has drawn a great deal of attention since it is a promising method to convert vibrational energy to electrical energy to supply lower-electrical power consumption devices. The most commonly used configuration for energy harvesting is the piezoelectric cantilever beam. Due to the inability of linear energy harvesting to capture broadband vibrations, most researchers have been focusing on broadband performance enhancement by introducing nonlinear phenomena into the harvesting systems. Previous studies have often focused on the symmetric potential harvesters excited in a fixed direction and the influence of the gravity of the oscillators was neglected. However, it is difficult to attain a completely symmetric energy harvester in practice. Furthermore, the gravity of the oscillator due to the change of installation angle will also exert a dramatic influence on the power output. Therefore, this paper experimentally investigates the influence of gravity due to bias angle on the output performance of asymmetric potential energy harvesters under harmonic excitation. An experimental system is developed to measure the output voltages of the harvesters at different bias angles. Experimental results show that the bias angle has little influence on the performance of linear and monostable energy harvesters. However, for an asymmetric potential bistable harvester with sensitive nonlinear restoring forces, the bias angle influences the power output greatly due to the effect of gravity. There exists an optimum bias angle range for the asymmetric potential bistable harvester to generate large output power in a broader frequency range. The reason for this phenomenon is that the influence of gravity due to bias angle will balance the nonlinear asymmetric potential function in a certain range, which could be applied to improve the power output of asymmetric bistable harvesters.


地址:陕西省西安市咸宁西路28号 邮编:710049
           版权所有:ca888亚洲城娱乐|手机版【官网首页】 站点维护: 数据与信息中心 陕ICP备06008037号